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Landau-Zener �LZ� transitions of a two-level system �e.g., electronic spin in molecular magnets� coupled to
one or many environmental spins �e.g., nuclear spins� are studied. For rather general interactions the LZ
problem is reduced to that of a Landau-Zener grid. It is shown analytically that environmental spins initially in
their ground state do not influence the staying probability P. This changes if they are prepared in a statistical
ensemble. For a more specific model with environmental spins in a transverse field, LZ transitions are studied
in the case of well-separated resonances in the LZ grid. The full evolution of the system is described as a
succession of elementary transitions at avoided crossings and free evolution between them. If the environmen-
tal spins are strongly coupled to the central spin, their effect on P is weak. In other cases LZ transitions are
strongly suppressed and P is decreasing very slowly with the sweep-rate parameter ��1 /v, v being the energy
sweep rate.
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I. INTRODUCTION

Spin tunneling in molecular magnets1–3 �see Ref. 4 for a
review� is strongly affected by the interaction between the
spins S of magnetic molecules �henceforth electronic spins or
simply spins� and nuclear spins I �see, e.g., Refs. 5–7�. Since
the tunnel splitting � is typically rather small, interaction
with nuclear spins create an energy bias W on electronic
spins that can largely exceed � and thus bring them in or off
tunneling resonance. Coupling to nuclear spins renders the
problem many-body character, especially if the coupling to
electronic spins is strong enough and thus tunneling transi-
tions of the electronic spins strongly perturb the nuclear sub-
system.

An important kind of experiments on molecular magnets
is the so-called Landau-Zener �LZ� experiment8,9 in which
the external magnetic field is time-linearly swept through the
resonance, and the magnetization change resulting from spin
transitions is monitored. The asymptotic staying probability
in the standard LZ effect is given by10–13

P = e−�, � �
��2

2�v
, �1�

where v=Ẇ=const is the energy sweep rate �contributions of
the four authors are reviewed in Ref. 14�. Relating P to the
observed magnetization change allowed to extract the split-
ting � for the molecular magnet Fe8.8 The results were in
accord with theoretical predictions that the dependence of �
on a magnetic field along the hard axis shows periodic sup-
pression of tunneling.15 In addition, experimental results for
the effective splitting �eff��� have demonstrated the exis-
tence of an isotope effect originating from different nuclear
spins of the investigated Fe8 isotopes.9 A remarkable prop-
erty of the LZ effect with linear sweep is independence of
the result for P of the damping of quantum levels16 that can
exceed �. Another remarkable feature is that in the fast-
sweep limit ��1 the lowest-order result P�1−� is robust
with respect to the effects of the interaction discussed below.
This allowed successful interpretation of the experiments at

fast sweep in terms of the standard LZ effect, except for the
isotope effect.9

In the LZ setting, all spins go through the tunneling reso-
nance at some moment of time, in spite of the internal bias
due to nuclear spins, as well as dipole-dipole interaction
�DDI� between electronic spins. However, the internal bias
has a nontrivial time dependence that makes the total energy
sweep time nonlinearly and drastically changes the LZ ef-
fect. In the quantum-mechanical language, crossing of two
energy levels in the one-particle LZ effect transforms into a
series of crossings of many energy levels in the many-body
case �see, e.g., Fig. 1 of Ref. 17, Fig. 2 of Ref. 18 or figures
in Refs. 19 and 20, where many-body LZ effect is described
by random matrices�. The result of multiple quantum transi-
tions at all crossings is in most cases to increase the staying
probability P for the initial quantum state, compared to the
noninteracting case. Especially strong increase in P �that is,
the reduction of the transition probability 1− P� takes place
for the ferromagnetic coupling between the electronic spins.

Analytical and numerical solution of the many-body LZ
problem is in general a formidable task. In particular, a full
quantum-mechanical solution is prohibitive because of a
huge Hilbert space, 2N for N spins 1/2. Quantum mean-field
approximation �MFA�17,21 makes the problem tractable nu-
merically, since the size of the numerical problem is only N.
A toy model of the many-body LZ effect, N spins all coupled
with the same strength with each other,17 also leads to a
numerical problem of size N, which allows to accurately
study the effect of many crossings and to test the validity of
the MFA. Probability for all spins to remain in their initial
states �that is not related to the magnetization change� in the
LZ model with pairwise interaction between spins can be
calculated analytically.22

Effect of realistic interactions such as DDI on the LZ
effect could only be studied in the fast-sweep limit, where a
perturbative analytical solution in order �2 can be found.18

This allowed to theoretically explain the experimentally ob-
served onset of the many-body regime at slower sweeps.9 Up
to now no way to theoretically study the effect of DDI on the
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LZ effect in molecular magnets at arbitrary sweep rate could
be proposed.

The interaction with nuclear spins strongly reduces the
effect of DDI on the LZ effect that otherwise would be too
strong. In Mn12, there are 12 Mn nuclear spins I=5 /2 in each
molecule, coupled to the electronic spin S via the contact
hyperfine interaction. Since for nuclear spins this interaction
is much stronger than other interactions such as the Zeeman
interaction with the external field and the nuclear quadrupole
interaction, one can neglect the latter. Then nuclear spins do
not have any dynamics and simply act on the electronic spins
as frozen-in random bias fields. The ensuing inhomogeneous
broadening of tunneling resonances strongly reduces the in-
fluence of spin-spin interactions on the LZ effect.18

In fact, there are a lot of other atoms in magnetic mol-
ecules, mainly hydrogen atoms that possess nuclear spins.
These nuclear spins interact with the electronic spins via the
nuclear dipole-dipole interaction �NDDI�. As the nuclear
magnetic moment is by a factor of 103 smaller than the elec-
tronic magnetic moment, NDDI is much weaker than DDI.
However, because of a large number of nuclear spins �120
protons in a Fe8 molecule23� their cumulative influence on
the electronic spins is appreciable. In contrast to Mn nuclear
spins in Mn12, interaction of the remote nuclear spins with
the electronic spins is not necessarily dominating, hence
these nuclear spins should have their own dynamics and the
field they produce on the electronic spins is not frozen in.

For a rather general electronic-nuclear spin Hamiltonian,
a perturbative approach up to second order in the bare tun-
neling matrix element is used in Ref. 24, which does yield
the dependence on the nuclear spins, which are described as
fluctuating fields.25 Restricting to a simpler model, a renor-
malized splitting obtained by an instanton technique is used
to calculate the transition probability up to second order. The
result24 coincides with that for the fluctuating fields, i.e., no
isotope effect exists in this approach. A similar approach by
eliminating the nuclear spins within a coherent spin path
integral formalism for the electronic spins has been per-
formed in Ref. 26 to predict suppression of macroscopic
quantum coherence. Since this was done without a sweeping
field, no predictions for the LZ probability can be deduced. A
purely numerical solution of the problem has been presented
in Ref. 27.

The aim of the present paper is to clarify the role of
nuclear spins possessing their own dynamics on the basis of
standard quantum mechanics with no usage of stochastic ar-
guments or functional techniques. We will be using the same
simplest model as Ref. 24, an electronic spin coupled to
several nuclear spins that also experience an effective field in
the perpendicular direction and are initially in the thermally
equilibrium state. Our approach consists of two steps. First
we prove analytically that the LZ problem for a rather gen-
eral electronic-nuclear spin Hamiltonian can be exactly
mapped to that of a Landau-Zener grid consisting of two
families of parallel ascending and descending lines vs the
energy bias W. This allows one to obtain some general pre-
dictions without specifying the explicit form of the nuclear
spin interactions. Then, in the second step, we construct an
analytical solution based on the standard LZ scattering ma-
trix at every elementary crossing of the system’s energy lev-
els including quantum-mechanical phases.

Problems of this kind have been considered
previously.24,28–30 Demkov and Osherov have shown that in
the case of one level crossing several energy levels, the stay-
ing probability after all crossings is a product of all elemen-
tary staying probabilities.28 Noteworthy is that this conclu-
sion is valid even in the case of crossings that are not well
separated with each other. In the case of several parallel
lines crossing another set of parallel lines, Brundobler and
Elser made a conjecture that the same result, multiplication
of probabilities, holds for every ascending line.31 Refs. 32
and 33 present derivations of the Demkov-Osherov-
Brundobler-Elser �DOBE� formula with different methods.
On the other hand, the probability of transition to upper
ascending lines is exactly zero since it would require evo-
lution in a negative time direction �the so-called no-go
theorem32,34,35�.

For the probabilities of transitions to lower ascending
lines and to descending lines, no general analytical result
exists. Since there are different “trajectories” through differ-
ent intermediate levels on the way between the initial and
final levels, transition probabilities oscillate because of
quantum-mechanical interference �see, e.g., Ref. 36�. As in
most cases these oscillations should be averaged out because
of the distribution of system’s parameters, an incoherent
formalism24,29 neglecting nondiagonal density matrix coeffi-
cients has been used.

What concerns the problem with nuclear spins that we are
considering here, one of our results is that nuclear spins ini-
tially in their ground state do not influence the asymptotic
staying probability P for the electronic spin. This surprising
result has been found numerically for an electronic spin with
hyperfine coupling to nuclear spins.37 A similar result has
been found independently for a spin-boson Hamiltonian38

and for an electronic spin coupled to a more general bath.39

On the other hand, here is a substantial increase of P if the
nuclear spins are initially in their excited states. In the latter
case and more generally for nuclear spins at finite tempera-
tures, the staying probability exhibits an isotope effect. How-
ever, the effect disappears again if nuclear spins are strongly
coupled to the electronic spin, as well as for arbitrary cou-
pling constant in the fast-sweep limit.

The paper is organized as follows. Section II introduces a
general model for a central spin 1/2 coupled to environmen-
tal spins and undergoing a LZ transition. The Hamiltonian of
environmental spins can be arbitrary, including their interac-
tion with each other. It is shown how the Hamiltonian of the
system can be diagonalized with respect to the environmen-
tal spins, which leads to the Landau-Zener grid. In Sec. III a
particular model is introduced, the model with one nuclear
spin I in an arbitrarily directed effective field. This model
can be easily diagonalized by choosing an appropriate frame
for the nuclear spin having the z� axis along the total field. In
Sec. IV the staying probability P on the LZ grid is calculated
for well-separated resonances by multiplying LZ scattering
matrices of elementary avoided crossings. In Sec. V the
model is generalized for N equivalent nuclear spins I. This
model can be reduced to the model with one nuclear spin as
the states of the nuclear subsystem can be classified in the
total nuclear spin Itot that is dynamically conserved. In this
section the effect of quantum-mechanical phase oscillations
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is considered. Averaging over initial thermal distribution of
nuclear spins and over different Itot leads to only partial av-
eraging out of the oscillations for the simulated system sizes.
Here the more realistic incoherent approximation is intro-
duced that leads to smooth dependences P���. The conclud-
ing section contains a discussion of the two main cases: Mn55

nuclear spins in the Mn12 molecular magnet and nuclear
spins of the protons.

II. GENERAL FORMULATION

Tunneling of an electronic spin S of a magnetic molecule
under the barrier can be considered in the approximation of
two resonant levels as dynamics of a pseudospin 1/2 coupled
to N environmental spins, say, nuclear spins I. The Hamil-
tonian has the form

Ĥ�t� = −
1

2
W�t�	z −

1

2
�	x − 	zV̂��I�� + Ĥnuc��I�� , �2�

where �I��I1 , . . . ,IN, and 	z, 	x are Pauli matrices. We as-
sume a time-linear energy sweep W�t�=vt with v=const. The
third term here describes the contact hyperfine coupling or
dipole-dipole interaction between the electronic spin and
nuclear spins. The fourth term is the nuclear Hamiltonian
that can also contain interaction between nuclear spins.

Let us introduce basis states

�
;�mI�� = �
� � ��mI��, 
 = � 1, mI
�i� = − I, . . . ,I , �3�

�mI��mI
�1� , . . . ,mI

�N�, which form an eigenbasis of 	z and Iz
�i�:

	z�
;�mI�� = 
�
;�mI�� ,

Iz
�i��
;�mI�� = mI

�i��
;�mI�� . �4�

The Hamiltonian matrix

H�t� � �	
�;�mI���Ĥ�t��
;�mI��� �5�

can be represented in the following block form correspond-
ing to the two electronic states:

H�t� = 
H−−�t� H−+

H+− H++�t� � , �6�

where H+−=H−+=−�� /2�I, I being a unit matrix in nuclear
indices, and

H���t� = �
1

2
W�t�I � V + Hnuc.

Here the �2I+1�N �2I+1�N matrices with respect to nuclear
indices are defined by

V � �	�mI���V̂��mI��� , �7�

etc.
Since H�� is Hermitian, it can be diagonalized by a uni-

tary transformation matrix U�

U�H���t�U�
−1 = D��t� , �8�

D��t� being diagonal. Applying the block unitary transfor-
mation

U = 
U− O

O U+
� �9�

to Eq. �6�, O being zero matrix, one obtains the transformed
Hamiltonian matrix

H��t� = 
D−�t� V�

V�† D+�t� � , �10�

where

V� = − ��/2�U−U+
−1, V�† = − ��/2�U+U−

−1. �11�

In the new basis �
 ;k�, there are two sets of nuclear states
for the electronic spin up and down, 
= �1. Diagonal ele-
ments of the diagonal matrices D��t� have the form

D
,k�t� = −



2
W�t� + d
,k, �12�

k=1, . . . , �2I+1�N, sorted so that d
,k increases with k. Ele-
ments of V� are

Vkk�
� = − ��/2��U−U+

−1�kk�. �13�

Avoided crossing of �2I+1�N ascending �
=−1� lines with
�2I+1�N descending �
=1� lines forms the Landau-Zener
grid shown in Fig. 1 in a particular case of one nuclear spin
I=1. In general, all crossings are avoided crossings with
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FIG. 1. Landau-Zener grid for one nuclear spin I=1 and �z=0:
�a� A��x; �b� A��x.
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splittings �kk�= �2Vkk�
� �, as defined by Eq. �13�. Crossing of

�1;k� with �−1;k�� occurs at D+,k�t�=D−,k��t� or

W�t� = Wkk� � d+,k − d−,k�. �14�

If the system is prepared at t=−� in the state �−1,k�, then
the probability Pkk to remain in this state is given by the
DOBE formula as the product of staying probabilities at all
crossings:28,31–33

Pkk = exp�− �
k�

��kk�/��2� = exp�− �
k�

��U−U+
−1�kk��

2� .

�15�

With the use of


k�

��U−U+
−1�kk��

2 = 
k�

�U−U+
−1�kk��U−U+

−1�k�k
†

= �U−U+
−1U+U−

−1�kk

= �I�kk = 1, �16�

one obtains

Pkk = e−�, �17�

the same as Eq. �1�. This result shows that Pkk does not
depend on nuclear spins, i.e., there is no isotope effect. How-
ever, since we are interested in transitions of the electronic
spin alone, the relevant quantity is

P = 
kk�

nkPkk�, �18�

where nk are populations of the nuclear levels in the initial
state. This formula assumes that initially nuclear spins are in
a state described by a diagonal density matrix, e.g., a thermal
equilibrium state. With account of the no-go theorem32,34,35

and Eq. �17�, the result reduces to

P = e−� + 
k�k�

nkPkk�. �19�

If all nuclear spins are initially in the ground state �nk
=�k,1�, there are no terms in the sum and the standard LZ
result is reproduced. Otherwise P exhibits an isotope effect
and increases above e−�, i.e., coupling to nuclear spins is
hampering spin transitions. For not too low temperatures,
nuclear spins are equidistributed in the initial state, i.e., nk
= �2I+1�−N.

The effect of hampering spin transitions is especially
strong at slow sweep. Indeed, at slow sweep in the case of a
standard LZ effect, the system practically follows the lower
adiabatic level, so that the probability P of a transition to the
upper adiabatic level �i.e., of staying on the ascending diaba-
tic level� is exponentially small. For the model with nuclear
spins, the starting level of the system is in general not the
lowest level because nuclear spins are thermally distributed
over their energy levels. In addition, splittings �kk� are
widely distributed so that there are very small splittings and
the adiabatic limit is practically never reached. As a result,
there are a lot of transitions between ascending and descend-
ing levels in both directions, so that the electronic spin per-

forms a complicated motion on the Landau-Zener grid.
Consideration in this section suggests that interaction be-

tween N nuclear spins does not change the situation qualita-
tively. Indeed, Eq. �10� has the same form with and without
interaction, so that the topology of the LZ grid is not af-
fected. Numerical results of Ref. 27 show only a moderate
effect of interaction between nuclear spins. Anyway, all fea-
sible types of interactions between nuclear spins, such as the
direct dipole-dipole interaction and indirect interactions via
the electronic spins, are much weaker than the interaction of
nuclear spins with the electronic spin and interaction of
nuclear spins with the external magnetic field or with the
gradients of the microscopic electric field6,7 due to the quad-
rupole moment of nuclei.

In the next section we will consider our basic model of an
electronic spin interacting with one nuclear spin in an effec-
tive field that can be easily diagonalized. Generalization for
the case of many nuclear spins will be done later in Sec. V.

III. THE MODEL HAMILTONIAN AND ITS
DIAGONALIZATION

Consider the Hamiltonian for an electronic spin coupled
to a single environmental spin

Ĥ = −
1

2
W�t�	z −

1

2
�	x − A	zIz − �zIz − �xIx �20�

that is a particular form of Eq. �2�. Terms with A�	zIx,
A�	zIy, and �yIy can be added to the Hamiltonian but such
terms can be eliminated by choosing its own system of axes
x� ,y� ,z� for the nuclear spin. A stands for the contact hyper-
fine interaction or for NDDI between the electronic spin and
protons, as said above. In Eq. �20� �z and �x are energy-
dimensional components of the field acting on nuclear spins,
e.g., an external magnetic field, ��=gn�nH�, where �=x ,y,
�n is the nuclear magneton, and gn is the nuclear Landé
factor. A Mn55 nucleus in the molecular magnet Mn12 has I
=5 /2 and the magnetic moment �Mn55=3.45�n, so that
gn,Mn55�3.45 / I�1.38. A proton has I=1 /2 and the magnetic
moment �p=2.79�n, so that gn,p�2.79 / I�5.58. For the
contact hyperfine interaction with the Mn55 nuclear spins in
Mn12 one has A /kB=0.02 K. This interaction is very strong
and equivalent to a magnetic field of 40 T applied to nuclear
spins.

For the description of the states of the nuclear spin it is
convenient to use the basis of its eigenstates corresponding
to the states �↓ � and �↑ �, or 
=�, of the electronic spin.
Fixing the electronic spin in the state 
 creates an effective
field 
Azez on the nuclear spin then gives the effective
nuclear Hamiltonian

Ĥ
,n,eff = − F
 · I , �21�

where

F
 = �
A + �z�ez + �xex �22�

is the total field acting on the nuclear spin. This nuclear
Hamiltonian can be diagonalized by choosing the z
� axis for
the nuclear spin in the direction of F
. The details of the
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procedure that is an implementation of the general method of
Sec. II can be found in Appendix. Elements of the Hamil-
tonian matrix in the new basis have the form

H

,mI;
�,mI�
� = E
,mI

�
�
�mI�mI
−

1

2
�
,mI,mI�

�
�,−
, �23�

where

E
,mI
= −

1

2

W�t� − F
mI �24�

are the diagonal elements of D� of Eq. �8�. For �z=0 one
obtains

�
,mI,mI�
= �
mI−mI�dmImI�

�I� 
2 arcsin
A

F
� , �25�

where dmImI�
�I� ��� is the spin rotation matrix and F=�A2+�x

2.

In Eq. �23� E
,mI
describes 2I+1 ascending �
=−1� and 2I

+1 descending �
=1� lines. All crossings are avoided cross-
ings, because all dmImI�

�I�
�0. The sum rule


m�=−I

I

�dm�m
�I� ����2 = 1 �26�

leads to Eq. �17� in our particular case.
For �z=0, one obtains the matrix V� in Eq. �10� �
=

−1, 
�=1� in the form

V� = −
�

2�
�x

F

A

F

−
A

F

�x

F
� �27�

for I=1 /2,

V� = −
�

2�
�x

2

F2
�2

�xA

F2

A2

F2

− �2
�xA

F2

�x
2 − A2

F2
�2

�xA

F2

A2

F2 − �2
�xA

F2

�x
2

F2

� �28�

for I=1, etc. The matrix elements depend only on the rela-
tion between �x and A in Eq. �20�. For �x�A the matrix V�
becomes nearly diagonal, that results from �
��−
 thus �
�0. In the opposite case �x�A matrix V� becomes nearly
antidiagonal, that results from �=�−
−�
��. For �x�A
level splittings �
,mI,mI�

=2�V

,mI,mI�
� � are large between the lev-

els having the same mI, other splittings are small, as shown
in Fig. 1�b�. This means that transitions of the electronic spin
mostly leave nuclear spins at their initial levels, a natural
result for a small coupling to spins. For �x�A, the maximal
splittings are those between the levels with nuclear indices
related by mI�=−mI, while other splittings are small, as
shown in Fig. 1�a�. In the original basis with the quantization
axis z, this means that the states of nuclear spins do not
change, too, similarly to the other limiting case. Indeed, for

�x=0 there are no transitions of nuclear spins since the latter
have no dynamics. For �z�0, matrix V� is cumbersome but
has the same properties: Nearly diagonal for ��0 �small A�
and nearly antidiagonal for ��� �large A�.

For large I the distribution of splittings in the plane
�mI ,mI��, defined by the spin rotation matrix dmImI�

�I� ���, be-

comes more interesting, see Fig. 2. The splittings become
very small outside an ellipse and maximal on the ellipse.
Inside the ellipse, dmImI�

�I� ����1 but changes abruptly if the

indices change by one. For �=� /2 the ellipse becomes a
circle of radius I. For �→0 or �→� the ellipse degenerates
into a vertical �mI�=mI� or horizontal �mI�=−mI� lines, re-
spectively. For large I, even if � is close to 0 ��x /A�1� or
� ��x /A�1�, there are many crossings inside the ellipse
where splittings are comparable to �.

In particular, for ��1 the matrix dm�m
�I� ��� of Eq. �A8�

becomes nearly diagonal and can be expanded directly as

dm�m
�I� ��� � �m�m − �	m��iIy�m�

= �m�m −
�

2
��m�,m+1lm,m+1� − ��m�,m−1lm,m−1� ,

�29�

where lm,m+1=�I�I+1�−m�m+1�. This is the case realized
for �x�A, where from Eq. �A10� with 
=−1 follows ��
−2A /F�−2A /�x and in Eq. �A7�

�−1,mI,mI�

�
= �mImI�

+
A

�x
��mI�,mI−1lmI,mI−1 − �mI�,mI+1lmI,mI+1� ,

�30�

in accordance with Eqs. �27� and �28� in this limit. Similarly,
the case �x�A corresponds to � close to �, so that dm�m

�I� ���
becomes nearly anti-diagonal. The elements adjacent to the
antidiagonal are proportional to ��x /A�lmI,mI+1. In both cases,
diagonal or anti-diagonal form of dm�m

�I� ��� requires IA /�x

�1 or I�x /A�1, respectively.

'Im

Im

)41.2/(

4/,30

=Λ
==

A

I

x

πβ

I

−I

I

−I

I

'Im

I

Im

FIG. 2. �Color online� Squares of splittings, ��mImI
� �2

� �dmImI

�I� ����2 on the LZ grid for a large “nuclear spin” I=30 and
�=� /4��x /A=2.41�.
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IV. TRANSITIONS ON THE LANDAU-ZENER GRID

Quantum evolution of the system accompanying the
sweeping across the Landau-Zener grid consists in LZ tran-
sitions at avoided crossings and a free evolution between
them. The latter leads to accumulation of quantum-
mechanical phases that leads to the interference in the stay-
ing probability P. The calculation is a straightforward matrix
algebra that can be found in the Appendix. The final result is
the full scattering matrix of Eq. �B20� that transforms the
initial state of the system cin into the final state cout. If in the
initial state the nuclear spin is in its ground state, application
of Eq. �B17� and calculation of the staying probability yields
the result of Eq. �1�, no effect of nuclear spins.

For I=1 /2 the problem can be solved analytically. If the
nuclear spin is in its excited state, then the result is

P = e−� + exp
−
�A2

F2 ��1 − exp
−
�A2

F2 ��
 �1 − exp
−

��x
2

F2 ��4 sin2 �F2

��2 . �31�

In the fast-sweep limit ��1 this formula simplifies to

P � e−� + �2
A�x

F2 �2

4 sin2 �F2

��2 , �32�

i.e., at the linear order in � Eq. �1� is robust. For A��x the
envelope of Eq. �31� has a local maximum at ���x

2 /A2 with
Pmax�1. The asymptotic ��1 behavior Eq. �31� is deter-
mined by the factor exp�−�A2 /F2� that is slowly decaying
for A��x. The factor A2 /F2 in the exponential is the square
of the antidiagonal elements of the matrix in Eq. �27� and it
corresponds to the splitting that is much smaller than �. To
the contrary, for A��x the result is close to P=e−�. This
means that the influence of nuclear spins strongly coupled to
the electronic spin is small.

In fact, analytical expressions, although too cumbersome,
can be obtained for any I. The common feature of the solu-
tions for all I is a standard decay of P��� for ��1 in the case
A��x and an extremely slow decay in the case A��x. This
becomes clear from the analysis of the LZ grids in both
limiting cases, shown in Fig. 1. For A��x the large split-
tings in Fig. 1�a� line up horizontally, and in the slow-sweep
limit the system cannot cross the dotted line moving along
the ascending levels from left to right. It follows the exact
levels and adiabatically turns down to the descending levels
that leads to a full LZ transition, P�0. On the contrary, for
A��x the large splittings in Fig. 1�b� line up vertically. Al-
though at slow sweep transitions at these crossings are adia-
batic, there are smaller crossings at W�0 and W�0 where
transitions are non-adiabatic, so that the electronic spin can
end up in its both states. As a result, P��� vanishes only at
extremely slow sweep, �≫1, at which the smallest cross-
ings become adiabatic.

Next we present figures illustrating the dependence of the
asymptotic staying probability P on the sweep-rate param-
eter � for the model with one nuclear spin. Figure 3 shows
the results for I=1 /2 and different ratios between �x and the
electron-nuclear coupling A. The effect of nuclear spins is

large for �x�A, in accordance with Eq. �31�.
With increasing I the number of crossings in the LZ grid

and thus the effect of the coupling to the nuclear spin on P
increases, as one can see in Fig. 4. On the other hand, the
effect is maximal for the nuclear spin initially in the mostly
excited state and decreases in the case of the thermal distri-
bution �T=�� in the initial state. For I=5 /2 the effect is large
even for �x /A=1 /3. This suggests that �x /A is not a proper
parameter to describe relative strength of different terms in
the Hamiltonian. As commented upon below Eq. �30�, the
ratio between the sub-anti-diagonal to the dominant anti-
diagonal terms is

lm,m+1�x/A � I�x/A �33�

that is close to 1 in Fig. 4. Still in Mn12 the hyperfine cou-
pling A is very strong, see comment below Eq. �20�. External
transverse field of 2 T creates �x /A�2 /40=0.05, so that
with I=5 /2 one has I�x /A�0.12. Since this parameter en-
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ε

FIG. 3. �Color online� Asymptotic staying probability P for an
electronic spin coupled to one nuclear spin I=1 /2, initially in its
excited state. The influence of strongly coupled nuclear spins be-
comes small, the curve �x /A=1 /3.
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FIG. 4. �Color online� P for one nuclear spin I=5 /2 with
�x /A=1 /3. The nuclear spin is prepared �i� in its mostly excited
state and �ii� in thermal distribution. In the latter case oscillations of
P��� are reduced. The results of the incoherent approximation �de-
fined in the next section� are shown by smooth lines in the two
cases.
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ters squared the effective sweep parameter �mm� at sub-
primary crossings, the direct effect of Mn55 spins on the LZ
transitions in Mn12 should be small for not too strong mag-
netic fields. The physical reason for this is that nuclear spins
do not have a sufficient dynamics to undergo transitions to-
gether with the electronic spin. The only thing that they can
do is to create a static bias on the electronic spin, random
because of the thermal distribution of nuclear spins. The lat-
ter becomes very important in combination with the dipole-
dipole interaction between the electronic spins.18

V. MANY NUCLEAR SPINS AND INCOHERENT
APPROXIMATION

Let us now consider the model of many nuclear spins
coupled to the electronic spin. The simplest way to general-
ize the results of the preceding section is to assume the
equivalence of nuclear spins and the same coupling to the
central electronic spin. In this case Eq. �20� is replaced by

Ĥ = −
1

2
W�t�	z −

1

2
�	x − �A	z + �z�Itot,z − �xItot,x,

�34�

where Itot=i=1
N Ii is the total nuclear spin. In fact, 12 nuclear

spins in Mn12 couple to the atomic spins with somewhat
different coupling constants5 but this will be ignored for a
moment. The length of the total nuclear spin is dynamically

conserved, �Ĥ , �Itot�2�=0. Thus the states of the nuclear sub-
system can be classified by the value of the total spin Itot
�NI and its projection mI on some axis. This reduces the
problem to the one studied in the preceding section. In par-
ticular, for all nuclear spins in the ground state the nuclear
subsystem will evolve as a single spin Itot=NI. In the realistic
case of thermal distribution of nuclear spins one has to av-
erage the solutions for particular values of Itot and mI in the
initial state over the distrubution of Itot and mI.

The number of realizations N�Itot� of Itot can be computed
recurrently.40 If the total spin of a system of N nuclei is Itot,
the total spin of its subsystem of N−1 nuclei Itot� assumes the
values �Itot− I�� Itot� �min�Itot+ I , �N−1�I�. Thus for the num-
ber of realizations N�Itot ,N� one can write

N�Itot,N� = 
Itot� =�Itot−I�

min�Itot+I,�N−1�I�

N�Itot� ,N − 1� . �35�

The initial condition for this recurrence relation is N�Itot� ,2�
=1 for 0� Itot� �2I. The quantity N�Itot� obeys the normaliza-
tion condition


Itot=frac�NI�

NI

�2Itot + 1�N�Itot� = �2I + 1�N. �36�

For NI�1, the quantity �2Itot+1�N�Itot� / �2I+1�N is the high-
temperature distribution function of the magnitude of Itot and
it is well approximated by 4�Itot

2 F�Itot�, where F�Itot� is a
normalized Gaussian function with respect to the three com-
ponents of Itot.

41 Thus for the asymptotic NI�1 form of the
distribution function of Itot normalized by 1 one has

N�Itot�
�2I + 1�N �

2�Itot

�2�	I�3/2exp
−
Itot

2

2	I
� . �37�

where 	I= �N /3�I�I+1�. It has a maximum at Itot=�	I which
is about 6 for Mn12 �I=5 /2, N=12�. Figure 5 shows an
agreement between the exactly computed N�Itot� / �2I+1�N

and its Gaussian approximation for I=5 /2 and N=12. This
agreement improves for higher values of NI. One can see
that practically the same result for N�Itot� / �2I+1�N can be
achieved with I=1 /2 and N=146. Thus in the model de-
scribed by Eq. �34�, the effect of 12 Mn55 spins is the same
as that of about 150 protons.

Summation over different values of Itot makes calculations
lengthier. In addition, there are high values of Itot with a
small statistical weight that consume a lot of time but do not
change the result. Thus one has to introduce a cut-off on Itot.
The results for I=5 /2 and N=12 �or for I=1 /2 and N=146�
and �z=0 are shown in Fig. 6. Since the most probable value
of Itot in this case is between 5 and 6, deviations from the
standard LZ effect are noticeable for �x /A down to 0.1 �see
discussion at the end of preceding section�.
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FIG. 5. �Color online� Normalized distribution function for the
total nuclear spin Itot.
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FIG. 6. �Color online� P��� for the electronic spin coupled to
N=12 nuclear spins I=5 /2 �initially in a thermal state with T=��
for different ratios �x /A and �z=0. Results of the incoherent ap-
proximation are shown by solid lines of same color.
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One can see in Fig. 6 that summations over both Itot and
mI in the initial state lead to decreasing of quantum-
mechanical oscillations in P���. However, averaging out the
oscillations is incomplete because for all values of Itot the W
intervals in the LZ grid are the same, although the number of
crossings change. In real situations the oscillations should be
averaged out, mainly because of different couplings A to
different nuclear spins that increases the number of crossings
from �2Itot+1�2 to �2I+1�2N. To take the phase averaging into
account without increasing the size of the problem, one can
use the incoherent approximation. In the case of well-
separated resonances one can consider the occupation num-
bers of the states

p
,mI
= �c
,mI

�2. �38�

The change of the state at the kth resonance is described by
Eq. �B13�. Then for the probabilities one has

p
,mI

out = A

,mI;
�,mI�
�k� A


,mI;
�,mI�
�k�� c


�,mI�
in c


,mI�
in� . �39�

Neglecting interference effects or, in other words, averaging
over phases amounts to the aproximation

c

�,mI�
in c


�,mI�
in� ⇒ p
�,mI�

�
�
��mI�mI�
. �40�

Then the change of the occupation numbers across a reso-
nance is described by

p
,mI

out = B

,mI;
�,mI�
�k� p


�,mI�
in , �41�

where

B

,mI;
�,mI�
�k� = �A


,mI;
�,mI�
�k� �2. �42�

Incoherent approximation requires only a slight change of
the computational method. Instead of Eq. �B17� one has

pout = B�2I�B�2I−1�
¯ B�−2I+1�B�−2I�pin. �43�

In particular, for one nuclear spin I=1 /2 one obtains Eq. �31�
with sin2�. . .�⇒1 /2.

Results of the incoherent approximation are shown in
Figs. 4 and 6 by smooth curves. The results similar to those
in Fig. 6 but for large ratios �x /A are shown in Fig. 7 within
the incoherent approximation. For very large �x /A, the sub-
primary splittings �left and right from the primary splittings
at W=0 in Fig. 1�b�� are very small, so that for not too slow
sweep transitions occur at W=0 and they become adiabatic
with P�0 for ��1. However, with further increase of �
transitions at crossings with sub-primary splittings begin,
and the curve P��� goes up again. Figure 8 gives an idea of
the dependence P��� for a large nuclear spin. The apparent
overall dependence is P����C1−C2 log �, seen in Fig. 8
over several decades in �. There are slow oscillations for
�x /A=100 that tend to disappear for large I.

VI. DISCUSSION

The model of a two-level system coupled to one or many
environmental spins considered above is one of basic models
illustrating many-body Landau-Zener effect with many

avoided level crossings forming a Landau-Zener grid. Exact
results of the multilevel LZ effect such as the no-go theorem
and DOBE formula apply to this model. In particular, if the
environmental spins are initially in their ground states, the
asymptotic staying probability is unchanged and given by
Eq. �1�. Accordingly no isotope effect exists in this case.
However, such an effect occurs when preparing nuclear spins
e.g., in a thermal ensemble.

The model under consideration is relevant for spin tunnel-
ing in molecular magnets, with coupling to nuclear spins,
although direct comparison with experimental results re-
quires taking into account the dipole-dipole interaction be-
tween electronic spins at the same time. Ref. 24 studying the
effect of nuclear spins only states that the results can be
applicable for the sweep fast enough, where the effect of the
DDI is weak. In fact, in the fast-sweep limit ��1 both ef-
fects of nuclear spins and DDI on the staying probability P
are of order �2 and additive, although the DDI contribution is
reduced by nuclear spins.18 For a general sweep ��1, no
analytical or numerical method treating the DDI microscopi-
cally is known.

Surprisingly, nuclear spins strongly coupled to the elec-
tronic spin, such as 12 Mn55 nuclear spins I=5 /2 in Mn12, do
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FIG. 7. P��� for the electronic spin coupled to N=12 nuclear
spins I=5 /2 for large ratios �x /A and �z=0 within the incoherent
approximation.
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FIG. 8. �Color online� P��� for the electronic spin coupled to
one large “nuclear spin” for different ratios �x /A and �z=0 within
the incoherent approximation.
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not significantly change the asymptotic survival probability
P��� for the electronic spin. This follows from the analysis
of the Landau-Zener grid, Fig. 1�a�. In physical terms,
nuclear spins in the case �x�A do not have a sufficient
dynamics to undergo transitions together with the electronic
spin. They rather act on the latter as static random fields that
have no effect by themselves but do significantly reduce the
influence of the DDI on the LZ effect.18

To the contrast, protons in molecular magnets can influ-
ence the LZ effect directly. Although the nuclear magneton
�n is small, the energy of the dipole-dipole interaction with
nuclear spins can exceed tunnel splitting �. For instance, the
ground-state splitting in Fe8 in zero field is only � /kB
�10−7 K. The energy bias on the electron spin from a pro-
ton at distance r is given by W�2Sg�B�p /r3, where g=2
and �p=2.79�n. One has ��W at the distance r��72 Å.
The volume of a corresponding sphere comprises about 400
unit cells of a molecular magnet. As each molecule, occupy-
ing a unit cell, comprises about 120 protons,23 the number of
protons creating bias W�� is about N=50000. These pro-
tons are typically weakly coupled to the electronic spin �A
��x� since their Zeeman interaction with the external field
greatly exceeds their NDDI with electronic spins. Applying
an external magnetic field, one can drastically increase � and
thus reduce N.

Effect of protons in principle could be tackled with the
method described in Sec. II. However, as each proton
couples to the electronic spin with its own coupling constant
A, the number of lines in the LZ grid, 2N, is too large to
implement a working computational algorithm. The first ex-
pected effect of so many crossings is complete averaging out
of quantum-mechanical phase oscillations that are still seen
in Fig. 6. This effect can easily be accounted for by the
incoherent approximation of Sec. V. After that different cou-
plings A become less important, and one can get a qualitative
idea of the effect of protons from the analysis in the preced-
ing section. The most probable combined nuclear spin Itot in
the distribution of Eq. �37� is �	I�110 that is of the same
order as the large “nuclear spins” simulated in Fig. 8. The
resulting P��� is decaying extremely slowly because of a
strong non-adiabaticity at large � induced by weak avoided
crossings outside the ellipse in Fig. 2. As the width of the
distribution of Itot is of the same order as the most probable
value of Itot, slow oscillations in Fig. 2 should be averaged
out after summation over all Itot. One can see that the results
for P��� in the case A��x slowly approach 1/2. This is in
accord with the results of Ref. 42 where the influence of
environment was modeled by a density-matrix equation with
dephasing.

It does not make sense, however, to further elaborate on
the effect of protons in this paper because in the practical
case A��x coupling to electronic spins only slightly per-
turbs protons. This might be an indication of a possibility to
solve the problem by another and more efficient method.
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APPENDIX A: DIAGONALIZATION OF THE NUCLEAR
HAMILTONIAN

The nuclear part of the Hamiltonian can be diagonalized
for a given direction of the electronic spin 
 by choosing the
quantization axis for nuclear spins along the field F
 defined
by Eq. �22�, i.e.,

ez

�

=

A + �z

F


ez +
�x

F


ex, �A1�

where

F
 = ��
A + �z�2 + �x
2. �A2�

The vectors ez

�

are rotated away from ez by the angles

�
 = arccos

A + �z

F


. �A3�

For �x�A, �z and �z�A, �+ is close to 0 and �− is close to
�. For �x�A, �z and A��z, both �+ and �− are close to 0.
For the transverse nuclear axes we define

ey

�

= ey, ex

�

= �ey  ez

�
� =


A + �z

F


ex −
�x

F


ez. �A4�

The corresponding basis set of states has the form

�
,mI� = �
��mI�
, �A5�

where the rotated states �mI�
 depend on 
. Elements of the
Hamiltonian matrix H� in the new basis, Eq. �10�, are defined
by

H

,mI;
�,mI�
� =
	mI�	
�Ĥ�
���mI��
�. �A6�

With the help of I= Ix

�
ex


�
+ Iyey + Iz


�
ez


�
one obtains Eq. �23� in

which

�
,mI,mI�
= �
	mI�mI��−
 �A7�

are the elements of V� in Eq. �11� for 
=−1, and the ele-
ments of V�† for 
=1. Elements of the Hamiltonian matrix
are placed in order of 
 changing from −1 to 1 and mI chang-
ing from I to −I.

The projector 
	mI �mI��−
 can be expressed through the
spin rotation matrix43

dm�m
�I� ��� = 	m��e−i�Iy�m�

= � �I − m� ! �I − m��!
�I + m� ! �I + m��!

�1/2
cos
�

2
�m+m�
sin

�

2
�m−m�

 
n

�− 1�n�I + m + n�!
�I − m − n� ! �m + n − m�� ! n!


sin
�

2
�2n

,

�A8�

summation going over max�0,m�−m��n� I−m. The final
expression is good for ��0. In the case ��0 one should
use the relation dm�m

�J� ���= �−1�m�−mdm�m
�J� �−��. For large I nu-

merical implementation of Eq. �A8� leads to precision prob-
lems. In this case it is much more convenient to obtain
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dm�m
�I� ��� numerically by finding eigenstates of the operator

Iz cos �+ Ix sin � and projecting them on �m�, eigenstates of
Iz.

Using �mI�
=e−i�
Iy�mI�, where �mI� are the states of the
initial basis, quantized along the z-axis, one obtains


	mI�mI��−
 = 	mI�ei�
Iye−i�−
Iy�mI�� = dmImI�
�I� ��� ,

� = − �
 + �−
. �A9�

For �z=0 from Eq. �A3� one obtains

� = 2
 arcsin
A

F
, �A10�

where F=�A2+�x
2.

APPENDIX B: TRANSITIONS ON THE LANDAU-ZENER
GRID

As in the general case considered in Sec. II, the energy
levels described by Eq. �24� separate into two families, as-
cending lines for 
=−1 and descending lines for 
= +1.
There are crossings between these families at

E+,mI
�+��t� = E−,mI

�−��t� . �B1�

Each ascending line crosses with 2I+1 descending lines and
vice versa. In the case �z=0 that will be considered below,
crossings are defined by

WmI
�+�,mI

�−�
�cross� = �mI

�−� − mI
�+��F � kF ,

k = mI
�−� − mI

�+� = − 2I,− 2I + 1, . . . ,2I . �B2�

There are total 4I+1 crossings. For a given k, the values of
mI

�−� and mI
�+� satisfy

mI
�−� − mI

�+� = k, − I � mI
�−�,mI

�+� � I . �B3�

For the leftmost crossing with k=−2I there is only one solu-
tion, �mI

�−�=−I ,mI
�+�= I�, i.e., only one pair of lines is crossing

here. Similarly, for the rightmost crossing with k=2I there is
only one pair of crossing lines with �mI

�−�= I ,mI
�+�=−I�. For

the crossing with k=−2I+1, there are two pairs of crossing
lines with �mI

�−�=−I+1,mI
�+�= I� and �mI

�−�=−I ,mI
�+�= I−1�.

For k=0 there are I crossing lines with all possible values of
mI and the corresponding mI

�+�=mI. In general, the allowed
values of mI

�−� and mI
�+� are in the intervals

max�− I − k,− I� � mI
�+� � min�I − k,I� , �B4�

and

max�− I + k,− I� � mI
�−� � min�I + k,I� . �B5�

In the case ��A ,�x crossings are well separated from
each other. In this case the process consists of tunneling tran-
sitions at the crossings and free evolution with phase accu-
mulation in the ranges between them. Transition at each
crossing is described by the LZ scattering matrix

M��� = 
 �P sign����1 − Pe−i�

− sign����1 − Pei� �P
� ,

�B6�

where P given by Eq. �1� is the Landau-Zener staying prob-
ability and

� = �/4 + Arg ��1 − i�� + ��ln � − 1� �B7�

with ��� / �2�� is the scattering phase and � is Gamma
function.

Evolution of the wave function between level crossings
reduces to the accumulation of the phase factors
exp�i�
,mI

�t��, where the phases are given by

�
,mI
�t� = −

1

�
�t

dt�E
,mI
�t�� . �B8�

The change of the phase between the kth and �k+1�th cross-
ings is given by

�
,mI

�k+1/2� =
1

�
�

tk

tk+1

dt�� 


2
vt + FmI� =

1

�

F

v
� 


4
F�2k + 1� + FmI�

�B9�

or, finally,

�
,mI

�k+1/2� =
�F2

��2�

k +
1

2
� + 2mI� . �B10�

Evolution of the state on the interval between the kth and
�k+1�th crossings is given by

c
,mI

out = T

,mI;
�,mI�
�k+1/2� c


�,mI�
in = exp�i�
,mI

�k+1/2���
�
�mI�mI
c


�,mI�
in

�B11�

or in the vector-matrix form

cout = T�k+1/2�cin. �B12�

The change of the state across the kth resonance is de-
scribed by

c
,mI

out = A

,mI;
�,mI�
�k� c


�,mI�
in , �B13�

or

cout = A�k�cin, �B14�

where for 
, mI and 
�, mI� describing a pair of crossing
levels A


,mI;
�,mI�
�k� is given by the LZ scattering matrix M, oth-

erwise, if there is no crossing, it is A

,mI;
�,mI�
�k� =�
,
��mI�mI

. To

formulate the condition of crossing, one has to consider the
cases 
�= �1 separately. For 
�= +1 �descending line� the
nuclear quantum number mI�=mI

�+� should be in the interval
given by Eq. �B4�, for a crossing to be realized, then in the
scattered state one has mI=mI

�−�=mI�+k. For 
�=−1 �ascend-
ing line� the nuclear quantum number mI�=mI

�−� should be in
the interval given by Eq. �B5�, for a crossing to be realized,
then in the scattered state one has mI=mI

�+�=mI�−k. Thus in
the general case one obtains
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A

,mI;
�,mI�
�k� = M
,
���
,mI,mI−k�  ��

��mImI�

+ �
,−
��mI,mI�+k�

�B15�

for 
�= +1, max�−I−k ,−I��mI��min�I−k , I�,

A

,mI;
�,mI�
�k� = M
,
���
,mI,mI+k�  ��

��mImI�

+ �
,−
��mI,mI�−k�

�B16�

for 
�=−1, max�−I+k ,−I��mI��min�I+k , I�, and
A


,mI;
�,mI�
�k� =�
,
��mI�mI

in all other cases.

The evolution of the state across the whole grid is given
by

cout = A�2I�T�2I−1/2�A�2I−1�
¯  A�−2I+1�T�−2I+1/2�A�−2I�cin,

�B17�

where cin is the state of the system before the leftmost cross-
ing. The calculation can be made recurrent introducing the
scattering matrix after the kth crossing:

ck
out = L�k�cin, �B18�

where cin is the initial state, same as in Eq. �B17�. One has
L�−2I�=A�−2I�

L�k� = A�k�T�k−1/2�L�k−1�, �B19�

k=−2I+1,−2I+1, . . . ,2I. In the final state it is

cout = c2I
out = L�2I�cin, �B20�

L�2I� being the full scattering matrix of the grid.
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